#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
using namespace std;
#pragma GCC target ("avx2")
#pragma GCC optimization ("O3")
#pragma GCC optimization ("unroll-loops")
//using namespace chrono;
typedef long long ll;
typedef unsigned long long ull;
typedef vector< int > vi;
typedef vector< ll > V;
typedef map<int, int > mp;
#define pb push_back
#define FastIO ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL);
#define F first
#define S second
#define debug cout << -1 << endl;
#define REP(i, a, b) for(int i=a; i<b; i++)
#define f0r(i, n) for (int i = 0; i < n; ++i)
#define f0r1(i, n) for (int i = 1; i <= n; ++i)
#define r0f(i, n) for(int i=n-1; i>=0; i--)
#define r0f1(i, n) for(int i=n; i>=1; i--)
#define fore(a, x) for (auto& a : x)
#define fori(i, a, b) for (int i = (a); i < (b); ++i)
#define MP make_pair
#define UB upper_bound
#define LB lower_bound
#define nw cout << "\n"
#define issq(x) (((ll)(sqrt((x))))*((ll)(sqrt((x))))==(x))
#define rev(v) reverse(v.begin(),v.end())
#define asche cerr<<"Ekhane asche\n";
#define rev(v) reverse(v.begin(),v.end())
#define srt(v) sort(v.begin(),v.end())
#define grtsrt(v) sort(v.begin(),v.end(),greater<ll>())
#define all(v) v.begin(),v.end()
#define mnv(v) *min_element(v.begin(),v.end())
#define mxv(v) *max_element(v.begin(),v.end())
#define valid(tx,ty) (tx>=0 && tx<n && ty>=0 && ty<m)
#define one(x) __builtin_popcount(x)
#define dag cerr << "-----------------------------------------\n";
//#define ordered_set tree<ll, null_type,less_equal<ll>, rb_tree_tag,tree_order_statistics_node_update>
//#define pop pop_back
#define setPrec(x) cout << fixed << setprecision(x)
typedef tree<int, null_type, less_equal<int>, rb_tree_tag,
tree_order_statistics_node_update> ordered_set;
int count(int l, int r, ordered_set &st) {
return st.order_of_key(r+1) - st.order_of_key(l);
}
#define sz(a) (int)a.size()
//#define fin cin
//#define fout cout
const int INF = 1e9;
const ll MOD = (ll)1e9+7;
const ll INFL = 1e18;
const ll mnINF = -1e18;
//const double diff = 10e-6;
const int MX = 100002;
const double PI = acos(-1);
using namespace std;
// int dx[] = {-1, 0, 1};
// int dy[] = {-1, 0, 1};
int dx[] = {-1, 0, 0, 1};
int dy[] = {0, -1, 1, 0};
// int dx[] = {-1, 1, 0, 0, -1, -1, 1, 1};
// int dy[] = {0, 0, -1, 1, 1, -1, 1, -1};
map< ll, int > m;
void solve() {
m.clear();
int n;
cin >> n;
V v(n);
f0r(i, n) cin >> v[i];
f0r(i, n) {
ll x = ((v[i]+i)%n+2LL*n)%n;
if(m[x]) {
cout << "NO\n";
return;
}
m[x]++;
}
cout << "YES\n";
}
void setIO(string name = "") { // name is nonempty for USACO file I/O
ios_base::sync_with_stdio(0); cin.tie(0); // see Fast Input & Output
// alternatively, cin.tie(0)->sync_with_stdio(0);
if (name.size()) {
freopen((name+".in").c_str(), "r", stdin); // see Input & Output
freopen((name+".out").c_str(), "w", stdout);
}
}
int32_t main()
{
//#ifndef ONLINE_JUDGE
// freopen("inputf.in", "r", stdin);
// freopen("outputf.in", "w", stdout);
//#endif
// setIO("lightson");
// freopen("ariprog.in","r",stdin);
// freopen("ariprog.out","w",stdout);
FastIO;
// freopen("lightson.in","r",stdin);
// freopen("lightson.out","w",stdout);
int t;
t = 1;
// preCalc();
cin >> t;
for(int i=0; i<t; i++) {
// cout << "Case " << i+1 << ": ";
solve();
}
return 0;
}
230B - T-primes | 630A - Again Twenty Five |
1234D - Distinct Characters Queries | 1183A - Nearest Interesting Number |
1009E - Intercity Travelling | 1637B - MEX and Array |
224A - Parallelepiped | 964A - Splits |
1615A - Closing The Gap | 4C - Registration System |
1321A - Contest for Robots | 1451A - Subtract or Divide |
1B - Spreadsheet | 1177A - Digits Sequence (Easy Edition) |
1579A - Casimir's String Solitaire | 287B - Pipeline |
510A - Fox And Snake | 1520B - Ordinary Numbers |
1624A - Plus One on the Subset | 350A - TL |
1487A - Arena | 1520D - Same Differences |
376A - Lever | 1305A - Kuroni and the Gifts |
1609A - Divide and Multiply | 149B - Martian Clock |
205A - Little Elephant and Rozdil | 1609B - William the Vigilant |
978B - File Name | 1426B - Symmetric Matrix |